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Abstract. The adsorption of a single ideal polymer chain on energetically heterogeneous and rough surfaces
is investigated using a variational procedure introduced by Garel and Orland (Phys. Rev. B 55, 226 (1997)).
The mean polymer size is calculated perpendicular and parallel to the surface and is compared to the
Gaussian conformation and to the results for polymers at flat and energetically homogeneous surfaces.
The disorder-induced enhancement of adsorption is confirmed and is shown to be much more significant
for a heterogeneous interaction strength than for spatial roughness. This difference also applies to the
localization transition, where the polymer size becomes independent of the chain length. The localization
criterion can be quantified, depending on an effective interaction strength and the length of the polymer
chain.

PACS. 36.20.Ey Conformation (statistics and dynamics) – 61.45.-v Solid-fluid interfaces
– 61.43.-j Disordered solids

1 Introduction

The adsorption of polymers on flat and homogeneous at-
tractive surfaces has been the subject of many investiga-
tions, see e.g. [1,2], but naturally occurring surfaces usu-
ally are rough and/or energetically inhomogeneous, the
heterogeneity leading to an enhancement of adsorption un-
der quite general conditions [3–11]: already simple physical
arguments contain the statement that upon increasing the
surface irregularity, the number of polymer-surface inter-
actions is strongly enhanced relative to the idealized pla-
nar surface (see Fig. 1). This is a consequence of a larger
probability of polymer-surface intersection with increasing
roughness.

The study presented here is partly motivated by the
theoretical investigation of reinforcement mechanisms in
carbon black filled elastomers, where the polymer adsorp-
tion is substantial as there is a strong binding of the
polymers to the surface (leading to a layer of localized
polymers, the so called “bound rubber” [12,13]). These
surfaces are rough and even fractal on many decades of
their size, down to the molecular size range, as well as
highly energetically (i.e. chemically) heterogeneous: the
distribution of interaction strengths can be characterized
by high energy sites surrounding a relatively low energy
background. Therefore in principle both kinds of disorder
should be incorporated in a theory which is supposed to
explain the bound rubber phenomenon.

In the literature so far spatial and energetical hetero-
geneities were always treated separately. In this paper we
want to present a treatment which covers both sorts of
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surface heterogeneity, thereby making possible a compar-
ison concerning the strength of adsorption enhancement.
Thus the general aim of the present paper is to produce
a theory for the adsorption and localization of polymers
on such surfaces. This is a nontrivial problem. For flat
surfaces the description of ideal polymers by Schrödinger
type equations is regarded as the method of choice, but
for rough surfaces this method cannot be used in general,
because the equations can be solved only for some highly
specific boundary conditions, e.g., regular fractal surfaces
[8]. Here we want to investigate the polymer behavior near
surfaces with any type of surface disorder, as well as sur-
faces with a wide range of heterogeneities in the attractive
potential. Therefore a path integral formalism seems to be
appropriate, since the surface disorder can be dealt with
explicitly up to an advanced stage of the calculation and
disorder averages are less difficult.

However, some technical problems appear, forcing us
to restrict the investigation to an idealized model system:
a single ideal polymer chain in interaction with an attrac-
tive, penetrable, infinite surface. The treatment of real
chains would require field theoretical approaches [1,14]
which are beyond the scope of the present paper. The
penetrability of the surface (both sides of the surface are
accessible for the polymer), which is of interest in the con-
text of polymer chains at membranes or interfaces, here
has to be assumed in order to avoid complex boundary
conditions. In the problem of polymer adsorption on flat
surfaces, non-penetrability is relatively easy to handle: the
polymers are considered in half space [1,2]. For random
surfaces an half space treatment is no longer possible.
Therefore we will loose information on the localization
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Fig. 1. Sketch of the main mechanism of adsorption enhancement by surface roughness: the number of possible binding sites
increases without being balanced by a loss in configurational entropy.

behavior, but nevertheless expect general insight into the
problem.

The results of the calculations are expressions for the
size of the chain, depending on the mean interaction
strength w0, the chain length N and the disorder param-
eters. The paper is organized as follows. The size of the
chain R⊥ perpendicular to the surface is obtained

(i) in Section 2 for strong spatial disorder, using a scaling
argument à la de Gennes [19] – this calculation intends
to give a better insight into the main mechanism of
adsorption enhancement;

(ii) in Section 3 for weak spatial disorder and energetically
heterogeneous surfaces, using a variational calculation.

In the latter case, first the Hamiltonian is formulated
which explicitly contains the surface geometry and a dis-
tribution of interaction strengths. Then the free energy
is approximated using a Feynman variational procedure.
It turns out that for our problem an extension of a
trial Hamiltonian introduced by Garel and Orland [15]
is much more suitable than the replica trial Hamiltonian
frequently used in connection with polymers in disor-
dered environments [16–18]. In comparison with Garel and
Orland, our main modification is the separation of the
monomer coupling parameter into components of differ-
ent space direction, thus enabling the polymer size paral-
lel and perpendicular to the surface normal to be distin-
guished. After minimization of the free energy, the effect
of surface heterogeneity can be summarized in an effec-
tive interaction strength which in most cases is larger than
the mean interaction strength. The variational scheme is
first tested on a flat and homogeneous surface, where it
is shown that the result agrees with the scaling estimate
and the results given earlier [1,2] for ideal chains. Then
the effective interaction strength is calculated for the spe-
cial cases of a periodic and random distribution of inter-
action strength on a flat surface and for a periodic and
random surface profile at constant interaction strength,
respectively. This also allows us to consider the localiza-
tion transition. The results are discussed and summarized
in Section 4.

2 Scaling argument for fractal spatial disorder

2.1 Flat surface

First we briefly review a simple scaling treatment of an
ideal chain adsorbed on a flat surface, as introduced by
de Gennes [19]. Let R⊥ and R|| ' R0 ' bN1/2 be the
mean size of an ideal polymer (with N monomers and
effective monomer length b) perpendicular and parallel to
the surface, respectively. The monomer density is assumed
to be constant in a region of size R⊥R

2
||. Then the number

N of monomers bounded to the surface is estimated as

N = bR2
||

N

R⊥R2
||

=
bN

R⊥
· (2.1)

Consequently the free energy can be written as

βF ≈
R2

0

R2
⊥

− βwN =
b2N

R2
⊥

− βw
bN

R⊥
, (2.2)

the first term being the confinement energy, the second
one due to contact interactions with the surface (−w is the
effective monomer attraction, β the inverse temperature).
Minimization of the free energy ∂F/∂R⊥ = 0 gives an
expression for the polymer thickness R⊥ perpendicular to
the surface,

R⊥ '
b

βw
· (2.3)

Thus the thickness of the polymer reduces with growing
attractive interaction strength, as expected. The indepen-
dence of the chain length N indicates that the polymer is
in the so called ”localized” regime [18].

2.2 Generalization for fractal surfaces

A fractal surface may be characterized by its fractal di-
mension dS , 2 ≤ dS ≤ 3, a value dS = 2 corresponding to
a flat surface. The limit dS → 3 produces an extremely
rough, space-filling surface, Brownian surfaces [20] are
characterized by dS = 2.5.

Now the number of bounded monomers is written as

N = b3−dS RdS⊥
N

R3
⊥

· (2.4)
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Running through the same procedure as above yields

R⊥ '
b

(βw)1/(dS−1)
, (2.5)

so that the result (2.3) for the case of a flat surface dS = 2
is recovered.

From (2.3) we have βw < 1 because of b � R⊥ for
weak adsorption, where no complete collapse on the sur-
face takes place. In fact for most materials values about
βw ∼ 0.01 . . .0.1 are found [21]. Therefore the polymer ad-
sorption on rough surfaces (dS > 2) generally is enhanced

compared to the case of a flat surface, i.e. Rrough
⊥ < Rflat

⊥ .
Although this is a crude argument, it gives an insight

into the main aspects of adsorption enhancement: the cru-
cial point is the competition between the gain in potential
energy obtained by binding to the surface and the loss in
chain entropy associated with the confinement of chains
in comparison to free chains. Therefore, the dominating
mechanism in our consideration above is the increasing
number of binding sites at a rough surface without paying
an entropy penalty, which means that a chain has to lose
less configurational entropy to adsorb on a rough surface.
This is in agreement with results of much more expensive
previous calculations by Douglas et al. [10] and Hone et al.
[11].

A similar argument holds for the case of energetical
heterogeneity [22]: with a distribution of the interaction
strength on the surface, the chain can select the strong
binding points without changing its configuration too
much, thus seeing a larger effective interaction strength.

3 Variational calculation

For a systematic study of R⊥ in the case of spatial and
energetical heterogeneity, the free energy is calculated via
a variational procedure, where the disorder is treated as
a quenched (i.e. frozen) randomness. The replica method
is avoided by introduction of an additional variational pa-
rameter, see next section. We consider an ideal chain at
an infinite, penetrable, well defined surface with low pro-
file. Furthermore we assume an attractive contact (i.e. ex-
tremely short range) interaction between chain and sur-
face that can be mimicked by a delta-potential.

Now this system is represented by its Edwards-
Hamiltonian, which reads

βH =
3

2b2

N∫
0

ds

(
∂R(s)

∂s

)2

+ β

N∫
0

ds V (R(s)), (3.1)

R(s) being the chain segment vector position. The poten-
tial contains the polymer-surface coupling,

V (R(s)) = −

∫
d2xK[h(x)] bw(x) δ(R(s)− h(x)) (3.2)

with h(x) = (x, h(x)), where x = (x1, x2) is an inter-
nal surface vector. The surface disorder is described by

w(x) for energetical disorder, i.e. an interaction strength
varying on the surface, and by h(x) for spatial disor-
der, i.e. a rough surface profile. The factor K[h(x)] =
(1 + |∇h(x)|2)1/2 takes account of the local deflection of
the surface in Cartesian coordinates.

In order to approximate the free energy we make use
of a Feynman variational procedure,〈

e−β(H−H0)
〉
H0

≥ e−β〈H−H0〉H0 , (3.3)

where 〈...〉H0
denotes the average with respect to a trial

Hamiltonian H0. This gives an upper bound to the free
energy

βF ≤ βF ∗ = βF0 + β 〈H −H0〉H0
(3.4)

with the abbreviation

βF0 = log

(∫
DR exp{−βH0}

)
. (3.5)

βF ∗ has to be minimized to give the best estimate for the
true free energy βF .

3.1 Trial Hamiltonian

The appropriate choice of the trial Hamiltonian is most
significant for the utility of the variational procedure. Here
we take an extension of a form suggested by Garel and
Orland [15],

βH0 =

1

2

3∑
j=1

N∫
0

ds

N∫
0

ds′ (Rj(s)−Bj)g
−1
j (|s− s′|)(Rj(s

′)−Bj).

(3.6)

Its features are: (a) it is quadratic in R(s), so that
an exact calculation of βF0 is possible; (b) the coupling
of chain segments is mediated by the variational param-
eters gj(|s − s′|), one for each direction of space: the in-
dices 1 and 2 are identified with the coordinates x1 and
x2 of the surface parameterization, index 3 corresponds
to the z coordinate parallel to the average surface nor-
mal; (c) there is an additional variational parameter B,
equivalent to a translation of the centre of mass of the
chain. It should be mentioned that this type of variational
principle was originally designed to avoid replica theory
in random systems [15]. This is another reason why the
Garel-Orland method is chosen here. If the polymer is as-
sumed to stick permanently at some place along the disor-
dered surface, the problem falls into classes dealing with
“quenched disorder” and difficulties with replica symme-
try breaking arise. In the following we will show that the
Garel-Orland method is indeed useful to treat the problem
of polymer adsorption on disordered surfaces as it yields
physically sensible results.
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Assuming cyclic boundary conditions R(N) ≡ R(0),
the variational free energy (3.4) can now be calculated to
give

βF ∗ = −
∞∑
n=1

3∑
j=1

log
g̃j(n)

b2

+
∞∑
n=1

3∑
j=1

Nω2
n

g̃j(n)

b2
+ βW(B,G) (3.7)

with ωn = 2nπ/N . Here the interaction energy W(B,G)
is the only term depending on the interaction potential,

W(B,G) =
−Nb

(2π)3/2(G1G2G3)1/2

∫
d2x K[h(x)]w(x)

× exp

{
−

3∑
i=1

(Bi − hi(x))2

2Gi

}
, (3.8)

the hi(x) being the components of h(x), i.e. h3(x) ≡ h(x).
The parameters Gj are defined by

Gj = 2
∞∑
n=1

g̃j(n) =
2

N

∞∑
n=1

N∫
0

ds cos(ωns)gj(s),

j = 1, 2, 3. (3.9)

Gj can be identified with the mean square radius of the
polymer parallel (G3) or perpendicular (G1 and G2) to
the surface normal.

3.2 Minimization of the free energy

Following the lines of Garel and Orland, the minimization
of βF ∗ with respect to g̃j(n) and B leads to

∇BW(B,G)
!
= 0 (3.10)

and

g̃j(n)
!
=

b2

Nω2
n + βb2

∂2W(B,G)

∂B2
j

(3.11)

because of ∂W(B,G)/(∂g̃j(n)) = ∂2W(B,G)/(∂B2
j ). As

already discussed by Garel and Orland [15], one does in
general expect the variational equations to have several
solutions. This especially applies to (3.10), since we con-
sider an infinite surface, e.g. leading to an infinite number
of solutions in the case of a periodic surface heterogeneity.
All these solutions have equal free energy.

Introducing the abbreviation

αj =

(
N2 b3

4(2π)1/2

β|weff
j |

G
3/2
j

)1/2

, (3.12)

the optimized parameter Gj is calculated from (3.11) as

Gj =


Nb2

4

coth(αj)− α
−1
j

αj
for weff

j ≥ 0,

−
Nb2

4

cot(αj)− α
−1
j

αj
for weff

j < 0.

(3.13)

The effective interaction strength weff
j contains all relevant

surface and polymer properties and is given by

weff
j =

(2π)1/2G
3/2
j

N b

∂2W(B,G)

∂B2
j

∣∣∣∣∣
∇BW(B,G)=0

(3.14)

In two special cases results can be obtained very easily:

(i) if there is no interacting surface at all, i.e. w(x) ≡ 0,
then we immediately have αj = 0 and therefore Gj =
Nb2/12 ≡ R2

0/2, the chain conformation is purely
Gaussian in all directions, as expected;

(ii) for an ideal surface, which means w(x) ≡ w0 and
h(x) ≡ h0, the effective interactions strengths are cal-

culated as weff
1/2 = 0 and weff

3 = w0. So the definition

(3.14) of weff
j guarantees correct results for this case.

The explicit form of weff
j for various special sorts of surface

heterogeneity is calculated in the next section.
The discussion of (3.13) is complicated by the fact that

the effective interaction strength itself is a function of the
polymer extensions in different directions. But in general

(3.13) can for weff
j ≥ 0 be expanded in the limits of small

and large αj . This yields the mean polymer extension into
the different directions of space, R̄3 being parallel to the
surface normal, R̄1 and R̄2 perpendicular to it, if 〈h(x)〉 =
0 is assumed,

R̄j '
√
Gj

'


R0

{
1− cN1/2βweff

j

}
for βweff

j � N−1/2

b

βweff
j

{
1−

π

N(βweff
j )2

}
for βweff

j � N−1/2

(3.15)

where, as above, R0 denotes the radius of gyration of the
corresponding Gaussian chain.

Thus in the limit of small effective interaction strength
the chain has Gaussian conformation (see Fig. 2),

whereas for high βweff
3 the chain is localized at the sur-

face, leading to a mean polymer size which in lowest order
shows the same characteristics as the result of the scal-
ing argument, equation (2.3). From the conditions for the
limiting cases, a localization criterion

β weff
j crit ≈ N

−1/2 (3.16)

can be found, which means β weff
j crit ≈ 0 for long chains.

Therefore very long chains always are adsorbed, i.e. lo-
calized, at an attractive surface. This of course is a con-
sequence of our assumption of a penetrable surface, since
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Fig. 2. Numerical result for the optimized variational param-
eter G3 ' R̄2

⊥ as a function of interaction strength (βweff
3 )1/2

and chain length N . The localization transition can be identi-
fied: for small values of weff

3 , G3 grows linearly with N , whereas

G3 is independent of N for large values of weff
3 .

in the opposite case of impenetrable surfaces adsorption
takes place only from a finite interaction strength [1], i.e.

β weff
j crit > 0.

For negative effective interaction strength weff
j < 0,

only the case β|weff
j | � N−1/2 is important for us, as we

are mainly interested in the adsorption behavior. Expan-
sion of (3.13) in this case yields

R̄j '
√
Gj ' R0

{
1 + cN1/2βweff

j

}
. (3.17)

3.3 Effective interaction strength

The full general form of the effective interaction strength
is

weff
j =

G
1/2
j

2π(G1G2G3)1/2

×

∫
d2xK[h(x)] w(x)

(
1−

(Bj − hj(x))2

Gj

)
× exp

{
−

3∑
i=1

(Bi − hi(x))2

2Gi

}
(3.18)

where the translational parameter B has to be chosen such
that ∇BW(B,G) = 0. In the following the surface is as-
sumed to be symmetrical with respect to the coordinates

x1 and x2. Then we immediately have B1
!
= 0 and B2

!
= 0

as a solution of the minimization equation (3.10). For sim-
plicity, we additionally assume the surface heterogeneity
to depend only on one space direction x1, which means

w(x) ≡ w(x1) and h(x) ≡ h(x1). Hence weff
2 = 0 and the

polymer extension into the direction of x2 equals that of

a Gaussian chain. In this case the expressions for weff
1 and

weff
3 reduce to

weff
1 =

1

(2πG3)1/2

∫
dxK[h(x)] w(x)

(
1−

x2

G1

)
× exp

{
−
x2

2G1
−

(B3 − h(x))2

2G3

}
, (3.19)

weff
3 =

1

(2πG1)1/2

∫
dxK[h(x)] w(x)

× exp

{
−
x2

2G1
−

(B3 − h(x))2

2G3

}
. (3.20)

Now a straightforward calculation for various types of sur-
face heterogeneity is possible.

(1) For a flat surface with energetical heterogeneity,
h(x) = h0, the minimization condition (3.10) re-

sults in B3
!
= 0, so that the centre of mass of the

chain is located on the surface. Inserting w(x) =∫∞
−∞ dq exp{iqx} w̃(q) leads to

weff
1 =

G
3/2
1

G
1/2
3

∞∫
−∞

dq q2 w̃(q) exp

{
−
G1q

2

2

}
,(3.21)

weff
3 =

∞∫
−∞

dq w̃(q) exp

{
−
G1q

2

2

}
. (3.22)

As can be seen from the notation w̃(q) = w0 δ(q) +
w̃∗(q), the effective interaction strength parallel to the
surface is independent of the mean interaction strength
w0.

• For a periodic interaction strength w̃(q) = w0 δ(q) +
(Aw/2){δ(q − f) + δ(q + f)} with amplitude Aw and
wave number f , we have

weff
1 =

G
3/2
1

G
1/2
3

Awf
2e−G1f

2/2 (3.23)

weff
3 = w0 +Awe

−G1f
2/2 (3.24)

Thus weff
3 takes on its maximum w0 +Aw, if the wave-

length of the heterogeneity exceeds the polymer size
parallel to the surface, λ ' f−1 � R̄1, because in this
case the polymer chain, which is located at a max-
imum of w(x), does not notice the existence of the
minima of the interaction strength. In the inverse case,
f−1 � R̄1, the fluctuations of w(x) cannot be resolved

any more, weff
3 is minimal and equals the mean inter-

action strength. weff
1 is always small (leading to a poly-

mer size R̄1 ' R0 parallel to the surface), except for
the case of a period of the fluctuation fitting the size
of the chain, f−1 ≈ R̄1, and large Aw.
• A randomly distributed interaction strength is best

handled by identifying the amplitude in Fourier space
w̃∗(q) with the square root of the spectral density
S(q), so that w̃(q) = w0 δ(q) + c−1∆w exp{−q2ξ2} for
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Fig. 3. Sketch of the optimized translational shift B of the
centre of mass of the chain for a sinusoidal surface profile.

a Gaussian distribution with variance ∆2
w, correlation

width ξ and constant c = (2π)1/4. Then the effective
interaction strengths read

weff
1 =

G
3/2
1

G
1/2
3

c∆w

(G1 + ξ2)3/2
, (3.25)

weff
3 = w0 +

c∆w

(G1 + ξ2)1/2
. (3.26)

The magnitude of the heterogeneity is determined by
both ξ and ∆w: the smaller the correlation width and
larger the variance, the stronger are the fluctuations,
which leads to an increase of the effective interaction
strength. The limiting cases perpendicular to the sur-
face are

weff
3 ≈

 w0 + c∆w ξ
−1 for ξ � R̄1 ,

w0 + c∆w R̄
−1
1 for ξ � R̄1 .

(3.27)

(2) In the case of a heterogeneous surface profile (whereas
the interaction strength w(x) = w0 is assumed con-
stant) the disorder has to be weak in order to make the
x integration feasible. Therefore we only investigate
the case |h(x)| � 1 and |∇h(x)| � 1, where 〈h(x)〉 =
0, and restrict the calculation to first order in the
fluctuation of h(x). With h(x) =

∫∞
0
dq cos(qx) h̃(q),

the minimization (3.10) yields B3 ≈
∫∞

0 dq h̃(q)

exp{−G1q
2/2}. This means that the centre of mass

of the chain to some extent follows the surface profile.
For an example see Figure 3, where B is sketched for a
periodic surface profile. Now the deflection factor can
be approximated by

K[h(x)] = (1 + |∇h(x)|2)1/2

≈ 1 +
1

2

∞∫
0

dq

∞∫
0

dq′ h̃(q) h̃(q′) qq′ sin(qx) sin(q′x).

(3.28)

If additionally the part of the exponent in (3.19) and
(3.20) which depends on h(x) is expanded, we obtain

in lowest order of h̃(q)

weff
1 ≈ w0

(
G1

G3

)3/2
∞∫

0

dq

∞∫
0

dq′ h̃(q) h̃(q′)

× exp

{
−
G1(q2 + q′2)

2

}[
q2 +

(q + q′)2

2

× (G3qq
′ sinh(G1qq

′)− cosh(G1qq
′))
]

(3.29)

weff
3 ≈ w0

1 +
1

2G3

∞∫
0

dq

∞∫
0

dq′ h̃(q)h̃(q′)

× exp

{
−
G1(q2 + q′2)

2

}[
3 +G3qq

′ sin

× h(G1qq
′)− cosh(G1qq

′)
]}
. (3.30)

• A periodic surface geometry h̃(q) = Ahδ(q − f) leads
to

weff
1 ≈ w0

(
G1

G3

)3/2
A2
hf

2

2

{
G3f

2
(

1− e−2G1f
2
)

−
(

1− e−G1f
2
)2
}

(3.31)

weff
3 ≈ w0

{
1 +

A2
hf

2

4

(
1− e−2G1f

2
)
−

3A2
h

4G3

×
(

1− e−G1f
2
)2
}
. (3.32)

For a flat surface, the polymer extension R̄3 parallel to
the mean surface normal (i.e. in z direction) is iden-
tical to the size perpendicular to the surface. This is
different for a rough surface profile, which now turns
out to be important for the interpretation of (3.31)
and (3.32). If for example G3 is small compared with
the squared wavelength λ2 ' f2, then the polymer
sticks to the surface, following the deflections. There-
fore the result for R̄3 '

√
G3 exceeds the polymer

size perpendicular to the surface by the amount of the
deflection, the effective interaction strength weff

3 ac-
cordingly is smaller than w0. Adsorption enhancement
therefore only can be obtained in the opposite case
R̄3 � f−1, where the effective interaction strength
parallel to the surface normal takes on its maximum

value weff
3 max = w0{1 +A2

hf
2/4}.

Here we have used G1 ≤ G3, which results from the

fact that weff
1 always is small according to the condition

Ahf � 1. As can be seen from (3.31), in the case

G3 � f−1 discussed above weff
1 is negative, so that

the mean polymer extension in x direction exceeds the
size of a corresponding Gaussian chain, see (3.17).
• Similar to the case of a randomly distributed inter-

action strength, the amplitude in Fourier space w̃∗(q)
of a randomly distributed surface profile is identified
with the square root of the spectral density S(q). This
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means h̃(q) = c−1∆h exp{−q2ξ2/2} for a Gaussian
distribution with mean 0, variance ∆2

h and correlation
width ξ. In order to satisfy the requirement of weak
disorder, we have to assume ∆2

h � 1 and ξ � 0. Then
the result for the effective interaction strength in z di-
rection is

weff
3 = w0

{
1 +

√
π

2

∆2
h

4

[
G1

ξ3
(2G1 + ξ2)−3/2

+
3

G3

(
(G1 + ξ2)−1 −

1

ξ
(2G1 + ξ2)−1/2

)]}
.

(3.33)

For a very large correlation width, which in the limit
ξ → ∞ corresponds to a flat surface, we again have
the effect of a reduction of the effective interaction
strength compared with the flat surface, weff

3 < w0.
Therefore the result which is relevant for adsorption
enhancement here is obtained in the case ∆h ≤ ξ2 �
G3 ≤ G1, where the effective interaction strength has
its maximum value

weff
3 max ≈ w0

{
1 +

c∆2
h

ξ3
√
G1

}
. (3.34)

An analytic expression for weff
1 is not available, but

the main features of the result can be estimated to
strongly resemble those of weff

1 for a periodic surface
profile discussed above.

4 Conclusions

The variational calculation presented here is valid for weak
spatial disorder only (therefore it does not reproduce the
scaling behavior for fractal surfaces). Nevertheless the
mechanism of adsorption enhancement is well reproduced,
we find agreement of the results in all special cases which
were already investigated in the literature.

A special feature of the variational method employed
here is the possibility of quantifying the localization tran-
sition, i.e., the transition from a slightly deformed Gaus-
sian coil to a localized conformation, where the polymer
size perpendicular to the surface no longer depends on the
chain length. According to the result (3.16) the localiza-
tion can be obtained by increase either of the effective
interaction strength or of the chain length. This helps to
compare the strength of adsorption enhancement for the
two sorts of disorder considered here: as can be seen from
the maximum values of (3.24) and (3.32) or from a com-
parison of (3.26) and (3.34), the localization transition is
only slightly affected by a rough surface profile, whereas
energetical heterogeneity can induce the transition even
at vanishing mean interaction strength. Therefore we con-
clude that the disorder-induced enhancement of polymer
adsorption is much more significant for a heterogeneous
interaction strength than for spatial roughness.

Our findings concerning the localization behavior are
affected qualitatively by the assumption of surface pene-
trability: for infinitely long chains at a flat and homoge-
neous impenetrable surface, the localization transition in

contrast to (3.16) only occurs for some nonzero value of the
attractive potential [1]. Nevertheless we expect our main
statement on the significance of adsorption enhancement
to hold also for impenetrable surfaces, since the compari-
son of transparent and opaque surfaces in simple soluble
cases by Hone et al. [11] shows that they should not be
affected differently by weak surface heterogeneities.

The polymer size parallel to the surface does not di-
rectly depend on the mean interaction strength, but only
through the extension perpendicular to the surface. Thus,
because it is less affected by heterogeneity, the former al-
ways exceeds the latter, except for one special case: for a
flat, neutral surface with a periodic interaction strength,
the polymer size parallel to the surface is smaller than per-
pendicular to it, if the period fits the polymer size such
that it is concentrated to a maximum of w(x) and even
restricted by the neighboring repulsive regions.
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